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SUMMARY

Traditionally, coupled methods have been employed for the computation of compressible �ows, whereas
segregated methods have been preferred for the computation of incompressible �ows. Compared to
coupled methods, segregated solvers present the advantage of reduced computer memory and CPU
time requirements, although at the cost of an inferior robustness. Therefore, in a series of papers
we present uni�ed computational techniques to compute compressible and incompressible �ows with
segregated stabilized methods. The proposed algorithms have an increased robustness compared to
existing techniques, while possessing additional bene�ts such as employing standard pressure boundary
conditions. In this �rst part, the thermodynamics of isothermal, thermally perfect compressible �ows
is set up in the framework of symmetric systems and the corresponding segregated algorithms are
introduced. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the computational �uid dynamics community, compressible �ows have been typically solved
with coupled solvers, whereas incompressible �ows have been tackled with segregated tech-
niques. The reasons are varied.
On the one hand, the �uid thermodynamics of compressible �ows couples very tightly the

dependent variables, mainly the thermodynamic variables such as the pressure and temperature.
In incompressible �ows, however, this coupling seems weaker.
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On the other hand, in incompressible �ows, the inde�nite structure of the left hand side
�nds in segregated formulations an escape to easy inversion. The literature and the variety of
solutions on this topic is very rich, including arti�cial compressibility methods [1], penalty
methods [2, 3], augmented Lagrangian methods [4–6], projection methods and fractional mo-
mentum methods [1, 7–10] and mixed methods [11–13]. For further information, the interested
reader can consult [14–16] and references therein.
Another avenue for �ow computation is the general class of stabilized methods, including

Petrov–Galerkin methods. Even when these methods are applied to incompressible �ows, the
equations have been solved segregatedly (see References [17–20] and references therein). An
exception to this can be found in the work of References [21, 22], where a coupled method
is proposed for non-isothermal incompressible �ows.
While coupled solvers typically are deemed as more robust, segregated solvers may have

computational advantages such as an inferior memory and CPU time demand, and a higher
modularity and �exibility in order to incorporate new physical phenomena modeled by addi-
tional partial di�erential equations. These advantages are even more dramatic in the solution
of large scale problems and in the application to parallel codes. However, some segregated
solvers based on pressure Poisson-like equations require non-trivial pressure boundary condi-
tions.
In the past, there has been a few attempts to develop segregated formulations for compress-

ible �ows, but success has only be partial. For instance, the characteristic Galerkin method is
proposed in References [23–27], but their formulation requires to solve fractional momentum
equations and therefore, two momentum passes per iteration. Another di�culty of this for-
mulation is coping with strong discontinuities and imposing boundary conditions through the
various fractional steps.
Therefore, in a series of papers we develop and explore segregated formulations that can

be used for both, compressible and incompressible �ows and lack the above drawbacks. In
particular, the variational framework employed in this work is based on stabilized formulations,
which have been successfully applied to the solution of compressible and incompressible �ows
with coupled solvers [17, 28–40].
The point of departure of the series of papers is this one, where segregated methods for

isothermal thermally perfect compressible �ows are proposed. The variational formulation is
set up for the set of pressure primitive variables. For that purpose, the thermodynamics of
this kind of �ows is developed in the framework of symmetric systems. The corresponding
generalized entropy function and �uxes are made explicit and the stability principle developed.
It will be shown that, in the incompressible limit, the stability principle leads to the classical
mechanical energy stability. Examples will be shown for very low Mach number �ows, as
well as for high Mach number cases with strong discontinuities. Then, this paper will be
followed by a second one, where methods for fully compressible �ows, robust enough to
tackle strong discontinuities, will be shown.

2. THE EQUATIONS FOR COMPRESSIBLE ISOTHERMAL FLOW

By de�nition, an isothermal �ow is that in which the temperature is constant. Therefore,
the energy equation becomes redundant, and the thermodynamic state of a general divariant
substance can be determined solely by one thermodynamically independent variable. As a con-
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sequence, the number of dependent variables necessary to describe an isothermal compressible
�ow is reduced by one compared to those needed for compressible �ow.
In Cartesian co-ordinates the set of the Navier–Stokes equations (continuity plus momentum

equations) can be written in conservative form as

U; t + Fadvi; i =F
di�
i; i + S (1)

In the equation above, U represents the vector of conservation variables, Fadvi is the advective
�ux in the ith-direction, Fdi�i is the di�usive �ux in the ith-direction, and S is the source
vector. The inferior comma denotes partial di�erentiation and the summation convention on
repeated indices is applied throughout.
In three-dimensional Cartesian co-ordinates, the above vectors are

U=



U1

U2

U3

U4


=�



1

u1

u2

u3


(2)

Fadvi = �ui



1

u1

u2

u3


+ p



0

�1i

�2i

�3i


(3)

Fdi�i =



0

�1i

�2i

�3i


(4)

S= �



0

b1

b2

b3


(5)

where ui are the Cartesian velocity components, � the �uid density, p the thermodynamic
pressure, �ij the Kronecker delta, �ij the viscous stress tensor and bi the body force per unit
mass.
Using any well de�ned set of variables Y, it is possible to linearize (1) as

A0Y; t +AiY; i=(KijY; j); i + S (6)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:271–323



274 G. HAUKE ET AL.

where A0 =U;Y, Ai=Fadvi;Y is the ith Euler Jacobian matrix, and K=[Kij] is the di�usivity
matrix obeying KijY; j=Fdi�i .
For the choice of pressure primitive variables,

Y=



p

u1

u2

u3


(7)

with p the pressure and ui the Cartesian velocity components. The explicit expression of the
corresponding matrices and vectors can be found in Appendix A.

3. GENERALIZED ENTROPY FUNCTION AND SYMMETRIC FORM

Symmetric forms of (1) and (6) are those in which the coe�cient matrices enjoy the properties
[41]

i. Ã0 is symmetric, positive-de�nite,
ii. Ãi is symmetric,
iii. K̃=[K̃ij] is symmetric, positive-semide�nite

where the tilde indicates that the above matrices stem from the symmetric form.
It is known that symmetric forms of the equations are linked to non-linear stability principles

through the so-called generalized entropy function, which at the same time engenders the
entropy variables [42, 43]. In the case of general compressible �ows, the generalized entropy
is just the physical entropy [44, 29].
Appropriately de�ned �nite element methods can inherit their discrete stability from the

above physical entropy-like principle. In this way, the robustness of the method is a result of
mimmicing the physics of nature.
Thus, for isothermal, thermally perfect �uids, (i.e. �uids in which e= e(T )), the generalized

entropy function can be de�ned as

H(U)=
1
2
�|u|2 − �T (s− s0) (8)

where T is the absolute temperature, s the physical entropy and s0 the reference entropy. Note
that for an isothermal �ow, T is constant.
For an isothermal simple compressible substance, the equation of state takes on the form

p=p(�) (9)

Furthermore, for a thermally perfect �uid, the Gibbs equation yields,

T ds=de+ pd
1
�
= − p

�2
d� (10)
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As p=p(�), also the entropy can be written solely as a function of s(�) and

T
ds
d�
= − p

�2
(11)

From H, following [42, 43] the generalized entropy function gives rise to the set of gen-
eralized entropy variables,

VT =
@H(U)
@U

(12)

resulting in

V=



p
�

− T (s− s0)− 1
2
|u|2

u1

u2

u3


(13)

Under the above assumptions, the entropy variables can also be written as a function of �,
the electro-chemical potential per unit mass,

V=



� − 1
2
|u|2

u1

u2

u3


(14)

with e=Ts0 since

�= h− Ts= e+ p
�

− Ts (15)

Note that the change of variables U �→V induces the Hessian matrix H;UU given by

Ã
−1
0 =

1
�



1
��T

+ |u|2 −u1 −u2 −u3

1 0 0

1 0

symm 1


(16)

which induces a symmetric, positive-de�nite Ã−1
0 if the density �¿0 and the isothermal

compressibility coe�cient �T¿0. Therefore, H(U) is a convex function of U and the above
change of variables is well de�ned.
Likewise, the matrices Ãi are symmetric and K̃=[K̃ij] are symmetric positive-semide�nite

(see Appendix A).
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4. THE GENERALIZED ENTROPY (IN)EQUALITY AND THE STABILITY
PRINCIPLE

It is known that symmetric forms of the equations are linked to stability principles via the
entropy variables. The stability principle is a combination of the conservation laws and can
be obtained by the dot product

V · (U; t + Fadvi; i − Fdi�i; i − S)=0 (17)

Applying the chain rule to the di�usive term and substituting the de�nition of the �uxes, one
gets

V · Ã0V; t +V ·Fadvi; i − (V ·Fdi�i ); i −V ·S= −V; i · K̃ijV; j (18)

Let us examine in detail the di�erent terms present in Equation (18)

V · Ã0V; t =H;UU; t =H; t

=
[
1
2
�|u|2 − �T (s− s0)

]
; t

(19)

V ·Fadvi; i =
(
p
�

− T (s− s0)− 1
2
|u|2

)
[�ui]; i + uj[�uiuj]; i + uip; i

=
[
�ui

(
1
2
|u|2 − T (s− s0) + p�

)]
; i

(20)

V · K̃ijV; j =V ·Fdi�i
= uj�ij (21)

V; i · K̃ijV; j =V; i ·Fdi�i
= uj; i�ji

=�(u; u)¿0 (22)

V ·S= �uibi (23)

In the above equations, the de�nition of the viscous dissipation function �(u; u)¿0 has been
used. Gathering all the contributions yields[

1
2
�|u|2 − �T (s− s0)

]
; t

+
[
�ui

(
1
2
|u|2 − T (s− s0) + p�

)]
; i

− [uj�ij]; i − �uibi= −�(u; u)

60 (24)
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where entropy �uxes are seen to be

�i=�ui

(
1
2
|u|2 − T (s− s0) + p�

)
(25)

Therefore, integration of Equation (24) over the domain � gives rise to a Clausius–Duhem
like inequality,

∫
�
(H; t + [�i]; i − [uj�ij]; i − �uibi) d� = − 1

T

∫
�
�(u; u) d�

6 0 (26)

This implies that under appropriate boundary conditions and body source term, the generalized
entropy H(U) is a bounded function. Since H(U) is a convex function of the conservation
variables U, the conservation variables are themselves bounded. Therefore, this is the non-
linear stability principle for isothermal compressible �ows.

4.1. Further insight into the entropy (in)equality

The internal energy equation for a substance can be written as

[�e]; t + [�uie]; i= − pui; i + ui; j�ij − qi; i + q̇v (27)

with e the speci�c internal energy, qi the heat �ux and q̇v a volumetric heat source. For a
thermally perfect, isothermal �uid, the internal energy is constant and the heat �ux is zero,
so for a vanishing volumetric heat source, the above equation can be simpli�ed into

pui; i = ui; j�ij

=�(u; u) (28)

Thus, in this case the viscous dissipation induces a volumetric expansion, which, in turn,
according to the continuity equation, decreases the density of the �uid particle.
Now the mechanical energy equation can be written as[

1
2
�|u|2

]
; t
+

[
ui
1
2
�|u|2

]
; i
= − [pui]; i + [ui�ij]; j + pui; i − ui; j�ij + �uibi (29)

Subtracting this equation to Equation (24), yields

−[�T (s− s0)]; t − [�ui(T (s− s0))]; i = −�(u; u) + [ui; j�ij]; i − pui; i

= −pui; i

= −�(u; u)

6 0 (30)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:271–323



278 G. HAUKE ET AL.

where in the last step, Equation (28) has been introduced. Thus, integrating over the domain
of interest for constant temperature,

∫
�
([�(s− s0)]; t + [�ui(s− s0)]; i) d� = 1

T

∫
�
�(u; u) d�

¿ 0 (31)

resulting in the second law of thermodynamics.
Therefore, the generalized entropy inequality is in this case a combination of the entropy

and the mechanical energy equations.

5. PARTICULAR CASES

5.1. Thermally perfect, isothermal perfect gas

Let us take a �uid which follows the isothermal perfect gas law

p=K� (32)

with K¿0. The isothermal compressibility coe�cient is in this case

�T =
1
�K

=
1
p
¿0 (33)

Furthermore, the entropy can be obtained from the Gibbs relation

T ds= − K d�
�
= − K dp

p
(34)

whose integration yields

T (s− s0)= − K ln �
�0

(35)

where s0 is the entropy at a density �0.
So for a perfect isothermal gas, the generalized entropy function given by (8) is simpli�ed

to

H(U)=
1
2
�|u|2 + �K ln �

�0
(36)

which yields the following entropy variables:

V=



K
(
1 + ln

�
�0

)
− 1
2
|u|2

u1

u2

u3


(37)
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5.2. Slightly compressible liquid

The equation of state for a liquid which is slightly compressible can be written as

�=�0 + �0�(p− p0) (38)

with �¿0. The isothermal compressibility coe�cient is in this case

�T =
�0�
�
¿0 (39)

Furthermore, the entropy can be obtained integrating

T ds= − p
�2
d�= − 1

�2�

(
�p0 +

�
�0

− 1
)
d� (40)

which yields

T (s− s0)= − 1
�0�

[
ln
�
�0
+
�0
�

− 1
]
+
p0
�0

[
�0
�

− 1
]

(41)

with s0 the entropy at the density �0.
Therefore, the generalized entropy function (8) is

H(U)=
1
2
�|u|2 + �

�0�

[
ln
�
�0
+
�0
�

− 1
]

− p0
�0

[
�0
�

− 1
]

(42)

which engenders the following generalized entropy function:

V=



p0
�0
+

1
�0�

ln
�
�0

− 1
2
|u|2

u1

u2

u3


(43)

5.3. Incompressible �uid

For a strictly incompressible liquid, the density is constant, and the equation of state can be
simply written as

�=�0 (44)

The isothermal compressibility coe�cient is in this case

�T → 0 (45)

limit that can be obtained from the isothermal perfect gas model with

K→ ∞ (46)
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As in the previous cases, the entropy can be obtained integrating the Gibbs relation,

T ds=de − p
�2
d�=0 (47)

implying that the entropy is constant:

s= s0 (48)

So in the incompressible limit, the generalized entropy function tends to

H(U)=
1
2
�|u|2 (49)

and likewise, the entropy variables are obtained as the limit of the isothermal �uid case,
yielding,

V=



p
�

− 1
2
|u|2

u1

u2

u3


(50)

Note that the entropy has disappeared in the above two relations because it is constant and
therefore it does not play any role regarding stability. Thus, the classical kinetic energy
stability principle for incompressible �uids is recovered.

6. STUDY OF VARIOUS THERMODYNAMIC LIMITS

6.1. Incompressible limit of the formulation

In the incompressible limit, the density becomes constant and, therefore, the isothermal com-
pressibility coe�cient tends to zero,

�T → 0 (51)

which in turn implies for the equations of state mentioned previously that

K → ∞ (52)

�→ 0 (53)

Then, it can be seen that the incompressible limit of the equations based on entropy variables
or pressure primitive variables is well de�ned.
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For example, the �rst Euler Jacobian for the entropy variables is

lim
�T→0

Ã1 = lim
�T→0

�2�T



u1
1
��T

+ u21 u1u2 u1u3

u1

(
3
��T

+ u21

)
u2

(
1
��T

+ u21

)
u3

(
1
��T

+ u21

)

u1

(
1
��T

+ u22

)
u1u2u3

symm u1

(
1
��T

+ u23

)



= �


0 1 0 0

3u1 u2 u3

u1 0

symm u1

 (54)

and for primitive variables

lim
�T→0

A1 = lim
�T→0



��Tu1 � 0 0

��Tu21 + 1 2�u1 0 0

��Tu1u2 �u2 �u1 0

��Tu1u3 �u3 0 �u1



=


0 � 0 0

1 2�u1 0 0

0 �u2 �u1 0

0 �u3 0 �u1

 (55)

As a consequence, the incompressible limit is well de�ned in both cases, and both, entropy
variables and pressure primitive variables are well suited to compute isothermal incompressible
�ows. For the consequences of these results, the reader is referred to Reference [22].

6.2. The isothermal limit of the general divariant �uid case

In Chalot et al. [45] and Hauke and Hughes [21, 22] the �ow equations for a compressible
general divariant �uid were derived for various sets of variables. For a general divariant
�uid, all the thermodynamic variables can be written as a function of the thermal expansion
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(or isobaric compressibility) coe�cient and the isothermal compressibility coe�cient,

�p =−1
�

(
@�
@T

)
p

(56)

�T =
1
�

(
@�
@p

)
T

(57)

The isothermal limit of the above equations can be obtained as

�p → 0 (58)

with �T �nite. From the Mayer equation, it can be deduced that in this case the speci�c heats
are equal,

cp= cv +
�2pT
��T

= cv (59)

As a consequence, the isothermal limit of the matrices for the general divariant �uid based
on entropy variables Ãdfi can be related to the isothermal matrices Ãi according to

block4×4(Ãdf0 ) = T Ã0 (60)

block4×4(Ãdfi ) = T Ãi (61)

block4×4(K̃dfi ) = T K̃i (62)

block4×4(Ãdf0 )
−1 =

1
T
Ã−1
0 (63)

where the operator block4×4 extracts the �rst 4 rows and 4 columns, resulting from eliminating
the total energy equation and the corresponding unknown [46].
Note that the inverse of the Riemannian metric tensor follows a di�erent transformation,

that is,

block4×4((Ãdf0 )
−1) �= 1

T
Ã−1
0 (64)

Therefore, in order to obtain the matrices for isothermal �ow, it is not possible to use directly
all the 4 × 4 blocks of the general divariant �uid matrices. This has a direct impact on the
formulation of the stabilized �nite element method, specially on the discontinuity capturing
term, which is presented in the next section (see Reference [46] for more details).

7. STABILIZED FINITE ELEMENT METHOD

The stabilized �nite element method combines the SUPG=GLS method [17, 31–35] with the
time-discontinuous space–time method [47]. Following the lines in References [21, 22], the
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method based on entropy variables V can be then transformed to the variables of interest Y
(for an elaboration on this, see also Reference [48]).
The computational domain � is discretized in nel elements of area �e and boundary �e.

In the absence of source terms and for linear shape functions the SUPG and GLS methods
coincide.
Consider a space–time domain, where the time interval I =]0; T [ is subdivided into N

intervals In=]tn; tn+1[, n=0; 1; : : : ; N − 1. We de�ne for each time interval Qn=�× In and
Pn=�× In, where � is the spatial domain and � its boundary. Finally, the ‘slab’ Qn is
decomposed into elements Qen, e=1; 2; : : : ; (nel)n.
The weak form is: Within each Qn, n=0; 1; : : : ; N − 1, �nd Y∈ SY such that ∀ W∈ VY:

∫
Qn
(−W; t ·U(Y)−W; i ·Fadvi (Y) +W; i ·KijY; j −W ·S) dQ

+
∫
�
(W(t−n+1) ·U(Y(t−n+1))−W(t+n ) ·U(Y(t−n ))) d�

+
(nel)n∑
e=1

∫
Qen

(LTW) · �(LY − S) dQ

+
(nel)n∑
e=1

∫
Qen

�hgijW; i ·A0Y; j dQ

=
∫
Pn
W · (−Fadvi (Y) + Fdi�i (Y))ni dP (65)

The �rst and last integrals constitute the Galerkin terms expressed as a function of the
variables Y, written in conservative form to ensure that the weak solution contains the correct
Rankine–Hugoniot relations.
Time-discontinuous Galerkin methods enforce weakly the continuity in time of the solution

across time-slabs, via the second integral, which has been de�ned by means of the upper and
lower limits,

W (t±n )= lim
	→0±

W (tn + 	) (66)

The least-squares contribution is written in terms of the di�erential operator L, which is
given by

L=A0
@
@t
+Ai

@
@xi

− @
@xi

(
Kij

@
@xj

)
(67)

and LT, which is de�ned by

LT =AT0
@
@t
+ATi

@
@xi

− @
@xi

(
KTij

@
@xj

)
(68)
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Note that when entropy variables are used, L̃= L̃T
because of the symmetry of the coe�cient

matrices and the symmetric form is recovered.

7.1. Stabilizing matrix

The stabilizing matrix is de�ned according to Reference [22]

�=Y;V�̃ (69)

where �̃ is the stabilizing matrix for entropy variables.
The adopted expression for the stabilizing matrix stems from the work in Reference [49]

and references therein. In that paper, two simple approximations to the eigenvalue problem
are presented, which will be used and explored in this work.

7.1.1. Diagonal tau. The �rst de�nition of the intrinsic time-scale parameter is a diagonal
matrix, consisting of applying the one-dimensional theory to each component of the Navier–
Stokes equations. It can also be interpreted as an extension of the incompressible tau [50, 18]
to compressible �ows, where the eigenvalue u has been replaced by the largest eigenvalue in
the streamwise direction, i.e. u+ c. Although there is also information travelling orthogonally
to the streamline direction, in the expressions proposed below only the streamline information
is retained, while information orthogonal to the streamline is dropped. This is reasonable
for high speed �ows, since u predominates over the disturbances propagation speed c. The
proposed de�nition is then,

�d=diag(�c; �m; �m; �m) (70)

where

�c =min
( |u|he

2

)
(71)

�m =min
(
	t
2�
;

he

2�(|u|+ c) +
he

2�|u| ;
me(he)2

4�

)
(72)

The above expressions have been written in terms of he, a measure of the element size in the
streamline direction; 	t, the time step; � and 
, the viscosity and the thermal conductivity;
and me= min(1=3; 2Ce), where Ce is a constant arising from an inverse estimate of the second
derivatives of the shape functions. For linear elements Ce=∞ and me=1=3 (see Reference
[18] for details).
The element size along the streamline direction he is de�ned as

he=
2√
�s

(73)

where

�s= �i; s�i; s (74)

with s the streamline direction and � the local element co-ordinates.
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Remark
For stationary �ows, the 	t terms are omitted.

Remark
In general, this simple matrix is less robust than the standard one given by the full eigenvalue
problem, and so, requires a stronger discontinuity capturing operator, such as the Hughes–
Mallet [51].

7.1.2. Non-diagonal tau. This de�nition exploits the relation for tau between pressure and
entropy variables (69), which can be rearranged to give

�nd=Y;U�̂ (75)

where �̂ is the stabilizing matrix for conservation variables. Thus, for conservation variables
a diagonal matrix is assumed

�̂=diag(�̂c; �̂m; �̂m; �̂m) (76)

and

�̂c =min
(
	t
2
;
1
�e

)
(77)

�̂m =min
(
	t
2
;
1
�e
;
�me(hedi� )

2

4�

)
(78)

The eigenvalue �e has been approximated by

1
�e
=

he

2(|u|+ c) (79)

The di�usive length scale has been taken as hedi� = h
e.

Finally, transformation (75) is applied to obtain a non-diagonal matrix for primitive
variables.

Remark
For the computation of stationary �ows, 	t must be dropped.

Remark
In this case, the CPU-time savings are due to a less computational e�ort involved in the
calculation of the stabilization matrix. Even though in theory the CPU-time savings for the
diagonal tau are potentially larger, in practice the present choice gives a faster convergence
rate.
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Remark
The non-diagonal tau is much robuster than the diagonal one.

7.2. Discontinuity capturing operator

The fourth integral is the so-called discontinuity capturing operator, which is written in terms
of the contravariant metric tensor gij, de�ned by

gij=[�k; i�k; j]−1 (80)

where �k , k=1; 2; 3, are the local spatial element co-ordinates, (i.e. not including the time-
dimension). The arti�cial di�usion �h is a scalar function of the residual, namely, LY−S. For
example, the Hughes–Mallet [51] and quadratic [35] versions are de�ned for the variables Y
as [21, 22]

�hHM =max

0;[ (LY − S) · Ã−1
0 (LY − S)

gijY; i ·ADC0 Y; j

]1=2
− (LY − S) · �̃(LY − S)

gijY; i ·ADC0 Y; j

 (81)

�hquad = 2
(LY − S) · �̃ (LY − S)

gijY; i ·ADC0 Y; j
(82)

where

ADC0 =VT;YÃ0V;Y=V
T
;YA0 (83)

The matrix �̃ is obtained from the version � for the variables Y as follows:

�̃= Ã−1
0 A0� (84)

8. SEGREGATED FORMULATION

Substitution of the �nite element spaces in the above weak form leads to a coupled system
of non-linear equations, which can be written as a residual depending on y(n) and y(n+1), the
nodal unknowns at time tn and tn+1, respectively. That is,

R(y(n+1); y(n))=0 (85)

An interesting family of methods to drive the residual to zero are predictor multi-corrector
algorithms [17]. These methods update the unknowns iteratively, like a Newton–Raphson
method, where the update is computed from the linear system,

M∗	y=−R
ynew = yold + 	y

(86)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:271–323



SEGREGATED METHOD FOR ISOTHERMAL COMPRESSIBLE FLOWS 287

Typically, the matrix M∗ can be the consistent tangent (i.e. the Jacobian of the residual with
respect to the unknowns),

M∗=
@R

@y(n+1)
(87)

or an approximation of the above matrix.
Thus, let us split the vector of dependent variables into two parts that gather the unknowns

of the continuity and momentum equations,

Y=

{
Y�

Yu

}
(88)

For instance, for pressure primitive variables

Y� = {p} (89)

Yu =


u1

u2

u3

 (90)

The nodal unknowns and the equations can be ordered in a similar manner,

y=

{
y�

yu

}
(91)

R=

{
R�

Ru

}
(92)

where the equations of mass conservation are set in R� and those of the momentum equations
in Ru.
Then, the Newton–Raphson method can be divided into blocks as[

M�� M�u

Mu� Muu

] {
	y�

	yu

}
=−

{
R�

Ru

}
(93)

The explicit expressions of the blocks can be found in Appendix B.
Although traditionally coupled solvers have been used to tackle problem (93), the purpose

of this paper is to investigate the application of segregated algorithms. Three strategies are
proposed, whose analysis is presented next.
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8.1. Diagonal iterative method

This simplest option in the resolution of system (93) consists of ignoring, along the iterative
process, the coupling between the two types of unknowns, that is, the o�-diagonal blocks of
M. This leads at each iteration to

M��	y� =−R�
Muu	yu =−Ru

(94)

Thus, the solution of the coupled problem is replaced by two smaller problems sequentially
solved. The �nal predictor multi-corrector algorithm is given in Algorithm 1, where i is the
iteration counter, and

R(i)� =R�(y
(i)
(n+1); y(n)) (95)

R(i)u =Ru(y
(i)
(n+1); y(n)) (96)

Algorithm 1. Predictor multi-corrector algorithm. Diagonal iterative method.

(Predictor phase)
y(0)� = y�; (n)
y(0)u = yu; (n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
M��	y(i)� = −R(i)�
Muu	y(i)u = −R(i)u
y(i+1)� = y(i)� +	y

(i)
�

y(i+1)u = y(i)u +	y
(i)
u

y�(n+1) = y(imax)�

yu(n+1) = y(imax)u

8.2. Jacobi iterative method

The next method consists of taking into account the coupling between equations in an explicit
manner, via a Jacobi iterative method. The coupling terms between mass-conservation and
momentum equations are evaluated at the previous iteration, so its value is known before
hand.
This corresponds to reordering equation (93) as

M��	y� =−R� −M�u	yu

Muu	yu =−Ru −Mu�	y�
(97)

and evaluating the right hand side at the values of the previous iteration (see Algorithm 2).
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Algorithm 2. Predictor multi-corrector algorithm. Jacobi iterative method.

(Predictor phase)
y(0)� = y�; (n)
y(0)u = yu; (n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
M��	y(i)� = −R(i)� −M�u	y(i−1)u

Muu	y(i)u = −R(i)u −Mu�	y(i−1)�

y(i+1)� = y(i)� +	y
(i)
�

y(i+1)u = y(i)u +	y
(i)
u

y�(n+1) = y(imax)�

yu(n+1) = y(imax)u

8.3. Gauss–Seidel iterative method

Convergence of the Jacobi method can be accelerated using the Gauss–Seidel modi�cation,
where at each iteration, the most up-to-date values of the unknowns are used to compute the
solution of the system. Again, this corresponds to reordering Equation (93) as in the Jacobi
method (see Equation (97)) and evaluating the right hand side with the most up-to-date values
of the present iteration (see Algorithm 3).

Algorithm 3. Predictor multi-corrector algorithm. Gauss–Seidel iterative method.

(Predictor phase)
y(0)� = y�; (n)
y(0)u = yu; (n)
(Multi-corrector phase)
for i=0; 1; : : : ; imax − 1
M��	y(i)� = −R(i)� −M�u	y(i−1)u

Muu	y(i)u = −R(i)u −Mu�	y(i)�
y(i+1)� = y(i)� +	y

(i)
�

y(i+1)u = y(i)u +	y
(i)
u

y�(n+1) = y(imax)�

yu(n+1) = y(imax)u

8.4. Under and over relaxation

The convergence of the solution can be accelerated or slowed down by controlling the amount
of change of the solutions,

y(i+1)� = y(i)� + ��	y
(i)
�

y(i+1)u = y(i)u + �u	y
(i)
u

(98)
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In some cases, it is necessary to limit the variation of the variables, precluding divergence
at the cost of a sti�er tangent, i.e. 06��; �u61.

9. NUMERICAL EXAMPLES

In this section, the di�erent versions of the segregated algorithm presented previously are
evaluated in detail through their application to numerical examples. These examples cover a
wide spectrum of isothermal steady state �ows ranging from incompressible subsonic �ows
to compressible supersonic �ows. The incompressible problems have been treated as nearly
incompressible with a Mach number M =0:1. All computations have been performed with
bilinear quadrilateral elements with standard 2× 2 Gaussian quadrature.

9.1. Incompressible �ows

9.1.1. Poiseuille �ow. The Poiseuille �ow is a fully developed, laminar �ow in a channel
between two in�nite parallel plates characterized by a quadratic velocity pro�le and a de-
creasing linear pressure �eld. This example serves to illustrate the di�culties which arise in
the stabilized formulation when coarse meshes with low order elements are used. To show
this, a unit square domain has been de�ned as shown in Figure 1 where a parabolic velocity
pro�le has been speci�ed at the inlet boundary, zero velocity along the top and bottom walls
and a constant pressure p0 = 100 at the outlet boundary which corresponds to a Mach num-
ber of M =0:1. The Reynolds number based on the centreline velocity and the height of the
channel is 1000.
The domain has been discretized into meshes of 5× 5, 10× 10 and 20× 20 square elements.

Figure 2 shows the velocity contours obtained with the coarsest and �nest meshes which match

Figure 1. Poiseuille �ow. Problem setup.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:271–323



SEGREGATED METHOD FOR ISOTHERMAL COMPRESSIBLE FLOWS 291

Figure 2. Poiseuille �ow. Velocity distribution.

well with the expected results. The velocity �eld for the 10× 10 mesh is practically the same
and there are not signi�cant di�erences between the formulations based on the diagonal and
the non-diagonal stabilizing matrices.
The pressure distributions obtained with the diagonal and non-diagonal taus are presented

in Figures 3 and 4, respectively. It can be seen that oscillations on the pressure �eld near
the inlet boundary are generated which decrease as the mesh is re�ned. This fact is better
observed in the pressure variation along the centreline plotted in Figures 5 and 6. It is also
shown in these �gures that the oscillations reduce when the non-diagonal tau is used in the
formulation.
The origin of these oscillations lies on the utilization of low order elements in the discretiza-

tion. The GLS method is a weighted residual formulation and the stabilization term depends
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Figure 3. Poiseuille �ow. Pressure distribution for �d.
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Figure 4. Poiseuille �ow. Pressure distribution for �nd.
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Figure 5. Poiseuille �ow. Pressure distribution along y=0 for �d.

Figure 6. Poiseuille �ow. Pressure distribution along y=0 for �nd.

on the complete residual of the di�erential equations. However, in the case of the Navier–
Stokes equations, piecewise linear elements cannot capture the second derivatives related to
the viscous stresses leading to what Jansen et al. [52] have termed as poor consistency ex-
pressed by an incomplete approximation to the residual a�ecting the accuracy of the numerical
solution. The e�ect of this poor consistency can be reduced by the use of �ne meshes since
the stabilization term includes the matrix tau which vanishes as the mesh is re�ned, as already
highlighted earlier when the pressure distributions have been introduced. High order elements
do not exhibit this problem because they are capable of e�ectively drive the residual to zero
and hence the consistency is maintained. From the practical point of view, the utilization of
low order elements presents clear advantages and alternatives to high order elements have
been proposed by Hauke [53] and Jansen et al. [52] who keep the discretization with low
order elements and introduce an estimation of the second order derivatives of the residual in
the stabilization term by a least square projection.
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Figure 7. Poiseuille �ow. Pressure distribution for the enhanced GLS residual with he=0:2 and �d.

Figure 8. Poiseuille �ow. Pressure distribution along y=0 for the enhanced residual with �d.

Other solutions involve the modi�cation of the variational formulation [19] or the addition
of boundary integrals [54, 55].
To illustrate the e�ect of the poor consistency on the GLS=SUPG method with low order

elements, the residual included in the stabilization term has been directly modi�ed in the code
since in Poiseuille �ow the momentum equation reduces to a balance between the pressure
gradient and the viscous stress tensor. The resulting pressure �eld obtained with the mesh
of 5× 5 elements and the pressure distribution along the centreline (see Figures 7 and 8,
respectively) show a drastic elimination of the oscillations. These results have been derived
with the diagonal tau matrix though the non-diagonal tau matrix and �ner meshes yield similar
distributions.
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Figure 9. Poiseuille �ow. Residual convergence for CFL=1, he=0:2.

Figure 10. Poiseuille �ow. Residual convergence for CFL=10, he=0:2 and �d.

Figure 9 shows the convergence of the normalized residual for the diagonal algorithm
with one corrector pass and CFL=1. The formulation with the diagonal stabilization matrix
presents a better convergence rate and, as will be seen later, allows higher CFL numbers so
the evolution to the steady state solution can be accelerated. This can be attributed to the fact
that the diagonal matrix is an extension to compressible �ows of the intrinsic time matrix
derived for incompressible �ows (see for example Reference [18]) and, hence, is better suited
for nearly incompressible problems.
Using the formulation with the diagonal tau, the normalized residuals for di�erent ver-

sions of the segregated algorithm and CFL=10 are presented in Figure 10. There, it can be
observed that two passes through the corrector loop increases the rate of convergence with
respect to one pass but requiring a considerably higher computational e�ort. Analogously, the
Gauss–Seidel version attains better convergence than the diagonal one but at an extra cost in
computational resources. On the other hand, the Jacobi algorithm needs low CFL numbers to
achieve convergence.
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Figure 11. Non-leaking cavity �ow. Problem setup.

9.1.2. Non-leaking cavity �ow. This problem is a classical test to evaluate the behaviour of
numerical algorithms for incompressible �ows. The example setup is stated in Figure 11 and
consists of a unit square domain containing a viscous �uid which is sheared at the top edge
via a horizontal velocity causing recirculation to develop inside the cavity. Figure 11 also
sketches the applied boundary conditions, that is, no-slip condition on all edges, including
the top horizontal edge, where the velocity components u1 = 1 and u2 = 0 are speci�ed. The
pressure �eld is constrained by �xing the value of the central node located at the bottom edge
to a value of p0 = 100 which corresponds to a Mach number M =0:1.
The domain is discretized by a mesh of 40× 40 square elements with re�nements at both

top corners to control the singularities of the numerical solution, as shown in Figure 12. The
results of Reference [22] con�rmed that for the coupled solver this mesh was su�cient.
The streamlines and pressure distributions for a Reynolds number of 400 and 1000 are

presented in Figures 13 and 14, respectively. In Figure 15, the velocity components along
the vertical and horizontal central lines are compared with the results published by Ghia
et al. [56] giving an excellent agreement.
The residual convergence of the diagonal version of the segregated algorithm with the diag-

onal tau matrix, a condition CFL=10 and global time step strategy is presented in Figure 16.
It can be seen that as the number of corrector passes increases, the better is the convergence
rate. However, though the improvement achieved from one to two corrector passes can be
regarded as signi�cant, this does not hold from two to four corrector passes. In this case,
the slight enhancement of the convergence rate obtained with four corrector passes is at the
expense of a much greater computational e�ort.
Figure 17 compares the residual convergence with local and global time step strategies

for CFL=10 and two corrector passes, showing that the local time strategy improves the
convergence rate.
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Figure 12. Non-leaking cavity �ow. Mesh.

Several runs have been performed with the Jacobi and the Gauss–Seidel versions but they
require lower CFL numbers to attain convergence. Thus, although the Jacobi and specially
the Gauss–Seidel methods give better convergence rates than the diagonal algorithm, the latter
has been proved to be the most robust, allowing speed up of the evolution of the residuals
through the use of higher CFL numbers.
Finally, the segregated algorithm shows lower convergence rates than the analogous coupled

method (see Reference [53]).

9.1.3. Backward facing step. This example studies the behaviour of a viscous �ow which
experiments a sudden expansion caused by the presence of a circulation generating step.
The problem setup is given in Figure 18. Taking the height of the step h as a longitudinal
reference, the inlet is located four step heights upstream of the step while the outlet is 36 step
heights downstream, su�ciently far from the step to ensure fully developed �ow conditions.
The expansion ratio at the step is 2:3. The applied boundary conditions are also sketched in
Figure 18. A parabolic velocity pro�le, corresponding to a fully developed �ow between two
parallel plates, is speci�ed at the inlet section. At the outlet, a reference pressure p0 = 100
has been stated leading to a Mach number M =0:1. Non-slip conditions are imposed on the
rest of the boundaries.
Several cases have been analysed for Reynolds numbers of 73, 191 and 229 based on

the average velocity at the inlet and the step height. The results are afterwards compared
with the experimental data of Denham and Patrick [58] and the numerical data published in
Zienkiewicz et al. [57].
As shown in Figure 19 and following the work of Reference [57], in the discretization a

non-uniform mesh of 1660 quadrilateral elements and 1751 nodes has been employed. The
smallest element, with dimensions hex=0:178h and h

e
y=0:048h, is located at the upper corner

of the step.
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Figure 13. Non-leaking cavity �ow Re=400. Streamlines and pressure.

Following the conclusions derived from the previous example, the calculations have been
carried out with the diagonal algorithm, the diagonal stabilization matrix, two corrector passes
and the local time step strategy. CFL=1 has been used due to convergence limitations. For
each simulation, the initial value has been taken from the solution of the immediately lower
Reynolds number case.
The obtained pressure and streamline contours are shown in Figures 20 and 21, respectively

showing a good correlation with the results presented by the above mentioned references.
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Figure 14. Non-leaking cavity �ow Re=1000. Streamlines and pressure.

Figure 22 compares the numerical values yielded by the present work with the measurements
of Denham and Patrick [58] of the horizontal velocity u1 in several sections downstream the
step. The agreement attained is fully satisfactory.
One parameter which serves to assess the performance of the numerical algorithm in this

problem is the length of the recirculation zone given by the location of the reattachment
point after the step. Table I compares the results reported by the di�erent authors. For low
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Figure 15. Non-leaking cavity �ow. Horizontal velocity component along the vertical centreline and
vertical velocity component along the horizontal centreline.

Figure 16. Non-leaking cavity �ow Re=400. Residual evolution for the diagonal algorithm
with CFL=10, global time stepping.
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Figure 17. Non-leaking cavity �ow Re=400. Residual evolution for the diagonal
algorithm with CFL=10, imax = 2.

Figure 18. Backward facing step. Problem setup.

Figure 19. Backward facing step. Mesh.

Reynolds numbers, the algorithm developed in the present work predicts slightly longer lengths
than those reported by Zienkiewicz et al. but at the higher Reynolds number this tendency
reverses and the reattachment length given by our algorithm is closer to the experimental
value of Denham and Patrick.

9.2. Compressible �ows

9.2.1. Normal shock. The present example consists of a one-dimensional inviscid �ow which
crosses a Mach 2 shock. A mesh of 21× 1 square elements covering the domain −2:16x62:1
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Figure 20. Backward facing step. Pressure contours.
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Figure 21. Backward facing step. Streamfunction.
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Figure 22. Backward facing step. Velocity pro�les after the step.

Table I. Backward facing step. Recirculation length for various methods as a function
of Reynolds number. Values between parenthesis denote percentage error with respect

to experimental values [58].

Re Denham and Patrick [58] Zienkiewicz et al. [57] Present

73 3.9 4.8 (23.0) 4.9 (25.6)
191 8.6 9.2 (7.0) 9.5 (10.5)
229 10.0 10.9 (9.0) 10.4 (4.0)

has been employed. The shock is placed at x=0 and the following initial conditions have
been applied:

x¡0



M =2

u1 = 1

�=1

p=0:25

; x¿0



M =0:5

u1 = 0:25

�=4

p=1

(99)

As boundary conditions, the velocity components and the density have been speci�ed at
the inlet. The vertical velocity component has been set to zero in the entire domain.
Figures 23 and 24 give the density and horizontal velocity variations across the shock,

respectively. The �gures show that the numerical method is capable of capturing the shock
within three elements. The solution has been obtained with CFL=1, the non-diagonal stabi-
lization matrix and the H–M shock capturing operator in order to achieve convergence.
The behaviour of the di�erent versions of the segregated algorithm is evaluated through the

evolution of the normalized residuals. Figure 25 shows the residual convergence corresponding
to the diagonal version with global time step strategy and di�erent corrector passes. Initially,
the algorithm presents better convergence rate when two corrector passes are used but at
the end the one corrector pass attains the same levels of residual reduction. The global and
local time step strategies are analysed in Figures 26 and 27. Both strategies present similar
performance although the global time step strategy drives the residuals to lower values. In
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Figure 23. Normal shock wave M =2. Density.

Figure 24. Normal shock wave M =2. x velocity component.

Figure 28 the diagonal and Gauss–Seidel algorithms are compared demonstrating that the latter
does not represent a practical alternative to the diagonal version.

9.2.2. Oblique shock wave. This problem corresponds to an inviscid uniform �ow with M =2
over a wedge at an angle of 10◦ generating an oblique shock with an angle of 27:4◦ emanating
from the leading edge of the wedge. See Figure 29 for a layout of the problem.
The computational domain is a unit square discretized by a mesh of 20× 20 square elements.

As boundary conditions, the velocity vector and the density have been prescribed at the in�ow
and top boundaries; none have been speci�ed at the exit; and zero normal velocity component
has been set at the wall, i.e. u2 = 0.
Figure 30 shows the Mach number distribution in the domain where the presence of the

shock can be clearly identi�ed. The variations of the density and the horizontal velocity com-
ponent along the vertical line x=0:9 are represented in Figures 31 and 32, respectively. In
this example, since the discontinuity across the shock is lower than the case of the normal
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Figure 25. Normal shock wave M =2. Residual convergence for diagonal algorithm with global 	t.

Figure 26. Normal shock wave M =2. Residual convergence for diagonal algorithm with imax = 1.

shock, the algorithm has converged with both the diagonal and non-diagonal stabilizing ma-
trices and even without the activation of the discontinuity capturing (DC) operator for low
CFL numbers. In the �gures, the e�ect of the DC operator can be clearly observed since the
oscillations near the shock reduce signi�cantly when it is included in the formulation. Observe
also that the version with the non-diagonal matrix tau and the DC operator gives the most
accurate results.
Regarding the residual evolution, Figure 33 shows the normalized residuals for the diagonal

algorithm with global time step strategy and CFL=10. In addition to more accurate results,
the use of the non-diagonal tau matrix yields better convergence rates than the diagonal tau.
Also, increasing the number of corrector passes to two initially improves that rate. Finally,
the non-diagonal tau with one corrector pass attains comparable rates to two passes with the
diagonal tau.
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Figure 27. Normal shock wave M =2. Residual convergence for diagonal algorithm with imax = 2.

Figure 28. Normal shock wave M =2. Residual convergence for imax = 2.

In Figure 34 the residuals for local time stepping are presented. In general, local time step-
ping gives slightly higher rates than the global strategy (with the exception of the formulation
with the non-diagonal tau matrix and two corrector passes).
Figure 35 compares the residual evolution obtained with the diagonal and the Gauss–Seidel

iterative methods with the non-diagonal tau matrix. The diagonal tau matrix Gauss–Seidel
method required diminish the CFL to unity. Although the Gauss–Seidel method has a faster
convergence rate per time step, the extra cost makes the diagonal method more e�cient. At
the beginning both methods converge at the same rate, but then, the Gauss–Seidel algorithm
is able to drive the residual faster to zero.
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Figure 29. Oblique shock wave M =2. Problem setup.

Figure 30. Oblique shock wave M =2. Mach number.

10. CONCLUSIONS

The thermodynamics of thermally perfect isothermal �ows has been clari�ed and set up in
the framework of symmetric systems. The generalized entropy function has been identi�ed
as the kinetic energy minus the entropy, leading to the corresponding set of entropy variables.
For this class of problems, the non-linear stability principle is a combination of the second
law of thermodynamics and the mechanical energy equation.
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Figure 31. Oblique shock wave M =2. Density along x=0:9.

Figure 32. Oblique shock wave M =2. x-velocity component along x=0:9.

The examples of perfect gas, slightly incompressible liquid and incompressible �uid have
been addressed. In particular, the incompressible limit recovers the classical mechanical energy
principle as the stability principle.
Then, the �ow equations have been solved with a stabilized method. Various segregated

strategies, namely the diagonal, Jacobi and Gauss–Seidel strategies, have been proposed that
work well for incompressible and compressible �ows, even in the presence of strong dis-
continuities. The incompressible limit of the formulation is well behaved for the set of both,
entropy and pressure primitive variables.
Due to its simplicity and robustness, from the practical point of view the diagonal algorithm

is the most advantageous for both compressible and incompressible �ows because in general
it allows higher CFL numbers. The Gauss–Seidel version usually gives good convergence
rates but it requires a bigger computational cost than the diagonal method. Finally, the Jacobi
strategy shows poor performance.
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Figure 33. Oblique shock wave M =2. Residual convergence for diagonal algorithm.
Global time stepping. CFL=10.

Figure 34. Oblique shock wave M =2. Residual convergence for diagonal algorithm. Local
time stepping. CFL=10.

Figure 35. Oblique shock wave M =2. Residual convergence for diagonal algorithm and
Gauss–Seidel. CFL=1, imax = 1.
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For nearly incompressible �ows, the best choice of algorithm parameters is to use the
formulation with the diagonal tau matrix, two corrector passes and local time stepping. For
supersonic compressible �ows, the most suitable option both, in terms of numerical accuracy
and residual convergence, corresponds to the formulation with the non-diagonal tau matrix
and one corrector pass. The in�uence of the time step strategy in this case is less clear and
either the global or local time stepping could be used.

APPENDIX A

A.1. Coe�cient matrices for a thermally perfect, isothermal �uid

Let be a thermally perfect (e= e(T )) �uid with equation of state

p=p(�) (A1)

As a function of v the speci�c volume, the isothermal expansion coe�cient can be expressed
as

�T = − 1
v

(
@v
@p

)
T
=
1
�

(
@�
@p

)
T

(A2)

So (
@p
@�

)
T
=

1
��T

(A3)

Also, the viscous coe�cients are �visc, �visc and

visc = �visc + 2�visc (A4)

A.1.1. Coe�cient matrices for primitive variables. For the set of primitive variables the
coe�cient matrices can be written as follows:

Y=



p

u1

u2

u3


(A5)

The metric tensors can be expressed as

A−1
0 =

1
�



1
�T

0 0 0

−u1 1 0 0

−u2 0 1 0

−u3 0 0 1


(A6)
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A0 = �


�T 0 0 0

�Tu1 1 0 0

�Tu2 0 1 0

�Tu3 0 0 1

 (A7)

The Euler Jacobians with respect to Y, Ai=Fadvi;Y , are given by

A1 =



��Tu1 � 0 0

��Tu21 + 1 2�u1 0 0

��Tu1u2 �u2 �u1 0

��Tu1u3 �u3 0 �u1

 (A8)

A2 =



��Tu2 0 � 0

��Tu1u2 �u2 �u1 0

��Tu22 + 1 0 2�u2 0

��Tu2u3 0 �u3 �u2

 (A9)

A3 =



��Tu3 0 0 �

��Tu1u3 �u3 0 �u1

��Tu2u3 0 �u3 �u2

��Tu23 + 1 0 0 2�u3

 (A10)

The di�usivity coe�cient matrices Kij, where KijY; j=Fdi�i , are

K11 =



0 0 0 0

0 visc 0 0

0 0 �visc 0

0 0 0 �visc

 (A11)
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K22 =



0 0 0 0

0 �visc 0 0

0 0 visc 0

0 0 0 �visc

 (A12)

K33 =



0 0 0 0

0 �visc 0 0

0 0 �visc 0

0 0 0 visc

 (A13)

K12 =KT21 =



0 0 0 0

0 0 �visc 0

0 �visc 0 0

0 0 0 0

 (A14)

K13 =KT31 =



0 0 0 0

0 0 0 �visc

0 0 0 0

0 �visc 0 0

 (A15)

K23 =KT32 =



0 0 0 0

0 0 0 0

0 0 0 �visc

0 0 �visc 0

 (A16)

Note that the viscous submatrices Kij are the same as those for entropy variables K̃ij. Also,

V;Y=



1=� −u1 −u2 −u3
0 1 0 0

0 0 1 0

0 0 0 1


(A17)
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and

ADC0 =VT;YA0 =



�T 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �


(A18)

A.1.2. Coe�cient matrices for entropy variables. For the set of entropy variables the coef-
�cient matrices can be written as follows:

V=



p
�

− T (s− s0)− 1
2
|u|2

u1

u2

u3


(A19)

The metric tensors can be expressed as

Ã−1
0 =

1
�



1
��T

+ |u|2 −u1 −u2 −u3

1 0 0

1 0

symm 1


(A20)

Ã0 = �2�T



1 u1 u2 u3

1
��T

+ u21 u1u2 u1u3

1
��T

+ u22 u2u3

symm
1
��T

+ u23


(A21)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:271–323



316 G. HAUKE ET AL.

The Euler Jacobians with respect to V, Ãi=Fadvi;V , are given by

Ã1 = �2�T



u1
1
��T

+ u21 u1u2 u1u3

u1

(
3
��T

+ u21

)
u2

(
1
��T

+ u21

)
u3

(
1
��T

+ u21

)

u1

(
1
��T

+ u22

)
u1u2u3

symm u1

(
1
��T

+ u23

)


(A22)

Ã2 = �2�T



u2 u1u2
1
��T

+ u22 u2u3

u2

(
1
��T

+ u21

)
u1

(
1
��T

+ u22

)
u1u2u3

u2

(
3
��T

+ u22

)
u3

(
1
��T

+ u22

)

symm u2

(
1
��T

+ u23

)


(A23)

Ã3 = �2�T



u3 u1u3 u2u3

(
1
��T

+ u23

)

u3

(
1
��T

+ u21

)
u1u2u3 u1

(
1
��T

+ u23

)

u3

(
1
��T

+ u22

)
u2

(
1
��T

+ u23

)

symm u3

(
3
��T

+ u23

)


(A24)

The di�usivity coe�cient matrices K̃ij, where K̃ijV; j=Fdi�i , are

K̃11 =



0 0 0 0

0 visc 0 0

0 0 �visc 0

0 0 0 �visc

 (A25)
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K̃22 =



0 0 0 0

0 �visc 0 0

0 0 visc 0

0 0 0 �visc


(A26)

K̃33 =



0 0 0 0

0 �visc 0 0

0 0 �visc 0

0 0 0 visc


(A27)

K̃12 = K̃T21 =



0 0 0 0

0 0 �visc 0

0 �visc 0 0

0 0 0 0


(A28)

K̃13 = K̃T31 =



0 0 0 0

0 0 0 �visc

0 0 0 0

0 �visc 0 0


(A29)

K̃23 = K̃T32 =



0 0 0 0

0 0 0 0

0 0 0 �visc

0 0 �visc 0


(A30)
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A.2. Coe�cient matrices and vectors for the segregated formulation of a thermally perfect
isothermal �uid

The coe�cient matrices for the segregated formulation based on pressure primitive variables
are as follows:

M��ab =
1
	t

∫
�e
N eaA0��N

e
b d�

+
∫
�e
N eaAi��N

e
b; i d�

+
∫
�e
N ea; iKij��N

e
b; j d�

+
∫
�e
N ea; iAi�AjN eb; j d�

∣∣∣∣
��

+
∫
�e
�egijN ea; iA0��N

e
b; j d� (A31)

Muuab =
1
	t

∫
�e
N eaA0uuN

e
b d�

+
∫
�e
N eaAiuuN

e
b; i d�

+
∫
�e
N ea; iKijuuN

e
b; j d�

+
∫
�e
N ea; iAi�AjN eb; j d�

∣∣∣∣
uu

+
∫
�e
�egijN ea; iA0uuN

e
b; j d� (A32)

M�uab =
1
	t

∫
�e
N eaA0�uN

e
b d�

+
∫
�e
N eaAi�uN

e
b; i d�

+
∫
�e
N ea; iKij�uN

e
b; j d�

+
∫
�e
N ea; iAi�AjN eb; j d�

∣∣∣∣
�u

+
∫
�e
�egijN ea; iA0�uN

e
b; j d� (A33)
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Mu�ab =
1
	t

∫
�e
N eaA0u�N

e
b d�

+
∫
�e
N eaAiu�N

e
b; i d�

+
∫
�e
N ea; iKiju�N

e
b; j d�

+
∫
�e
N ea; iAi�AjN eb; j d�

∣∣∣∣
u�

+
∫
�e
�egijN ea;iA0u�N

e
b; j d� (A34)

The above expressions have been written as a function sub-matrices, which are explicited
below. For the mass conservation equation these are:

A0�� = [��T ] (A35)

A1�� = [��Tu1] (A36)

A2�� = [��Tu2] (A37)

A3�� = [��Tu3] (A38)

Kij�� = [0] (A39)

and the sub-matrices to build the momentum equations are

A0uu = �


1 0 0

0 1 0

0 0 1

 (A40)

A1uu = �


2u1 0 0

u2 u1 0

u3 0 u1

 (A41)

A2uu = �


u2 u1 0

0 2u2 0

0 u3 u2

 (A42)
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A3uu = �


u3 0 u1

0 u3 u2

0 0 2u3

 (A43)

K11uu =


visc 0 0

0 �visc 0

0 0 �visc

 (A44)

K22uu =


�visc 0 0

0 visc 0

0 0 �visc

 (A45)

K33uu =


�visc 0 0

0 �visc 0

0 0 visc

 (A46)

K12uu=KT21uu =


0 �visc 0

�visc 0 0

0 0 0

 (A47)

K13uu=KT31uu =


0 0 �visc

0 0 0

�visc 0 0

 (A48)

K23uu=KT32uu =


0 0 0

0 0 �visc

0 �visc 0

 (A49)

Finally, the cross coe�cient sub-matrices are

A0�u = [0 0 0] (A50)

A1�u = [� 0 0] (A51)

A2�u = [0 � 0] (A52)
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A3�u = [0 0 �] (A53)

Kij�u = [0 0 0] (A54)

and

A0u� =

��Tu1��Tu2
��Tu3

 (A55)

A1u� =

��Tu
2
1 + 1

��Tu1u2
��Tu1u3

 (A56)

A2u� =

 ��Tu1u2
��Tu22 + 1

��Tu2u3

 (A57)

A3u� =

 ��Tu1u3
��Tu2u3
��Tu23 + 1

 (A58)

Kiju� =

00
0

 (A59)
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